
ThePhD

phdofthehouse@gmail.com

@thephantomderp

https://github.com/ThePhD/sol2/

October 14th, 2016

https://twitter.com/thephantomderp
https://github.com/ThePhD/sol2/

Lua & Lua C API
 Lua

 Lua C API
 stateful, stack-based
 well-documented
 mostly clear semantics / mappings

3 of 38

Limitations of Lua C API
 Stack-Based

 Hard to grok sometimes
 Must clean up or following operations will overflow the

stack

 Simple in Lua ≠ Simple in API
 Incredible amounts of boilerplate
 Efficient stack management is hard

4 of 38

Lua C API can do Simple Things
 my_table[“a”]

 get ‘my_table’ global
 get field
 lua_to{x} value

 my_func(2)
 push `my_func` global function
 push argument
 call, get return(s)

5 of 38

(╯°□°）╯︵ ┻━┻

 other_func(
my_table[“a”][“b”], my_func(2)

)

 Lua C API does not scale
 amount of necessary boilerplate
 developer time

6 of 38

Limitations of C
 No overloading

 “which one do I need, again?”
 Hard to specialize general-purpose routines

lua_gettable()
lua_getglobal(const char*)
lua_getfield(const char*)
lua_geti(int) [5.3+]

lua_rawgeti(int)
lua_rawget()
lua_rawgetp(void*)

7 of 38

Okay… so we wrap it?
 Type tells us what we need to do

 Overloading/Dispatching to cover up the base
 Stuff implementation details into various functions

8 of 38

More MeatPower
 Higher-level, complex operations

 Calling a function
 with complex arguments

 Tables
 with nested lookup

 Structured data
 Mimicking C, C++ structures

9 of 38

Sol2
 Started by Danny Y. “Rapptz”

 Unmaintained because he has other great ideas
 Pull requests sitting dead in repository

 Rewritten, developed into Sol2

10 of 38

Disclaimers
 I’m the author of sol2

 I did not author the 12 other benchmarked libraries
 E-mailed every single library author, however
 All of them got back to me with proper usage notes

 Great benchmarking technology
 nonius: https://nonius.io/
 statistically-significant benchmarking
 much better than my hand-rolled loops

11 of 38

https://nonius.io/

sol::stack
 The core of the API; usually never seen

lua_State* L = ...;
sol::stack::get_field<true>(L, "some_key");
int the_value = sol::stack::get<int>(L, -1);
lua_pop(L, 1);

lua_createtable(L, 0, 2);
sol::stack_reference ref(L, -1);
sol::stack::set_field(L, 1, "val1");
sol::stack::set_field(L, 2, "val2", ref.stack_index());
ref.pop();

http://sol2.readthedocs.io/en/latest/api/stack.html 12 of 38

http://sol2.readthedocs.io/en/latest/api/stack.html

Basics
 Demonstrating some basics

 Load a config file, mess with it

number = 24
number2 = 24.5
important_string = 'woof woof'
some_table = { value = 48 }
function bark (val)

print(val .. ' waf waf!')
end

config.lua

13 of 38

Basics - tables
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.script_file("config.lua");

int number = lua["number"];
std::string important_string = lua["important_string"];
int value = lua["some_table"]["value"];

sol::optional<int> safe = lua[“this_is"]["not_real"];
int default_value = safe ? safe.value() : 24; // 24

http://sol2.readthedocs.io/en/latest/tutorial/all-the-things.html 14 of 38

http://sol2.readthedocs.io/en/latest/tutorial/all-the-things.html
http://sol2.readthedocs.io/en/latest/tutorial/all-the-things.html
http://sol2.readthedocs.io/en/latest/tutorial/all-the-things.html
http://sol2.readthedocs.io/en/latest/tutorial/all-the-things.html
http://sol2.readthedocs.io/en/latest/tutorial/all-the-things.html

Basics - functions
sol::function bark = lua["bark"];
bark(lua["important_string"]); // woof woof waf waf!

lua["woof"] = []() { std::cout << "Hey there!" << std::endl; };

lua.script("woof()"); // prints "Hey there!"

 Very easy to use
 Painless to set up
 Can be used without sol::state; just lua_State*

http://sol2.readthedocs.io/en/latest/tutorial/functions.html 15 of 38

http://sol2.readthedocs.io/en/latest/tutorial/all-the-things.html

16 of 38

17 of 38

18 of 38

usertype
 The Big One™ - best part of Sol2

 member function/variable bindings
 metamethod

 automatically generated equality/comparison methods

 properties (like luabind)!
 static functions as member functions

 Take self argument

 static variables, functions
 (simple_usertype) runtime extensible

http://sol2.readthedocs.io/en/latest/api/usertype.html 19 of 38

http://sol2.readthedocs.io/en/latest/api/usertype.html

usertype – a live example

20 of 38

Implementation - functions

userdata metatable
of functions

__(new)index:
itself

21 of 38

22 of 38

Implementation - variables

userdata metatable
of functions

__(new)index:
lua_CFunction

23 of 38

24 of 38

Implementation – variables, speed

userdata pass-off table

metatable
with functions

__(new)index:
lua_CFunction

__(new)index:
second table

25 of 38

:(
 Can’t use the speed method

 userdata not ‘failed lookup’ item
 metatable is the ‘failed lookup’ item
 2x-4x performance hit for ALL methods/variables

 Karel Tuma patched item in his LuaJIT fork

 metatable-per-userdata?

26 of 38

27 of 38

“I think it’s better than Selene”
 - Shohnwal, March 21, 2016
 Sol2 had better support at the time

 Failure to communicate, so improved: http://sol2.rtfd.io

https://github.com/ThePhD/sol2/issues/36 28 of 38

http://sol2.rtfd.io/
https://github.com/ThePhD/sol2/issues/36

Benchmarks
“To be honest with you, Sol2 is the first binding library I

have compared against where I have had to disable
runtime checks in OOLua”
– Liam Devine, OOLua,
https://github.com/ThePhD/sol2/issues/156#issuecomment-236913783

https://github.com/ThePhD/lua-bench 29 of 38

https://github.com/ThePhD/lua-bench
https://github.com/ThePhD/lua-bench

Lua wants
 __index/__newindex extra argument fix

 add the original userdata / table that triggers the whole
lookup cascade as the last argument

 keeps backwards compatibility, enable efficient member
function lookup

 New GC
 corsix is on it with LuaJIT !

30 of 38

Thanks To
 Professor Gail E. Kaiser

 COMS E6156 – Advanced Software Engineering

 Iris Zhang
 Vetted documentation

 Kevin Brightwell (: Nava2)
 Took great interest in sol2 before anyone else
 Vastly improved the CI

 https://travis-ci.org/ThePhD/sol2
31 of 38

https://travis-ci.org/ThePhD/sol2
https://github.com/ThePhD/sol2/

Thanks To
 Lounge<C++>

 Elias Daler (@EliasDaler), Eevee (@eevee)
 Blogposts (https://eev.ee, https://elias-daler.github.io)

 Jason Turner (@lefticus)
 Encouraged me to present, talk about Sol2
 Runs CppCast (http://cppcast.com)

32 of 38

http://eev.ee/
http://elias-daler.github.io/
http://cppcast.com/

Thank You!
 Questions and/or Comments?

 If you end up using Sol2, tell me about it here:
https://github.com/ThePhD/sol2/issues/189

 Thoughts about Future Direction?

 Concerns?
 …. Lunch?~

33 of 38

https://github.com/ThePhD/sol2/issues/189

Bug Hunting
 “The road to success in Software Development is paved

with the tears of your failed tests and the sleepless
nights over your Heisenbugs.” - Some Poor Developer

34 of 38

Lua
 Very few actual bugs in the implementation, except…!
 Investigating one now

 Compile with C++
 pcall from a C function that throws an exception

 returns -1 (not a defined error)
 does not even clean stack?

35 of 38

Clang
 “internal linkage” bugs
 Excessively pedantic

 “condition is the result of a constant”
 it’s a template argument, clang, please stop torturing me with

all these warnings :<

 apple-clang’s only purpose is to literally introduce new
strange, build-breaking, progress-stopping bugs
 negative value on enum breaks demangler
 forced us to parse from __PRETTY_FUNCTION__

36 of 38

VC++ (Visual Studio)
 Help

Me… !

37 of 38

GCC
 Less compiler bugs

 auto&& in lambda declaration
 More actual unsupported features

 has_* vs. is_* trait debacle
 extended constexpr not backported to GCC 4.x.x

38 of 38

	No Overhead? �Zero-Cost Lua C API Abstraction
	No Problem.
	Lua & Lua C API
	Limitations of Lua C API
	Lua C API can do Simple Things
	(╯°□°）╯︵ ┻━┻
	Limitations of C
	Okay… so we wrap it?
	More MeatPower
	Sol2
	Disclaimers
	sol::stack
	Basics
	Basics - tables
	Basics - functions
	Slide Number 16
	Slide Number 17
	Slide Number 18
	usertype
	usertype – a live example
	Implementation - functions
	Slide Number 22
	Implementation - variables
	Slide Number 24
	Implementation – variables, speed
	:(
	Slide Number 27
	“I think it’s better than Selene”
	Benchmarks
	Lua wants
	Thanks To
	Thanks To
	Thank You!
	Bug Hunting
	Lua
	Clang
	VC++ (Visual Studio)
	GCC

